
Independent Sampling Genetic Algorithms

Chien-Feng Huang
Center for the Study of Complex Systems, 4477 Randall Lab.

University of Michigan
Ann Arbor, MI 48109

cfhuang@engin.umich.edu
(734)763-3323

Abstract

Premature convergence is the loss of diversity
in the population that has long been recog-
nized as one crucial factor that hinders the
efficacy of crossover. In this paper, a strategy
for independent sampling of building blocks
is proposed in order to nicely implement im-
plicit parallelism. Based on this methodol-
ogy, we developed a modified version of GA:
independent sampling genetic algorithms (IS-
GAs). Simply stated, each individual inde-
pendently samples candidate schemata and
creates population diversity in the first phase;
subsequently we allow individuals to actively
select their mates for reproduction. We will
present experimental results on two bench-
mark problems, “Royal Road” functions of
64-bits and bounded deception of 30-bits, to
show how the performance of GAs can be im-
proved through the proposed approach.

1 INTRODUCTION

Genetic algorithms (GAs) have been successfully ap-
plied to several difficult search and optimization prob-
lems in science and engineering. One major source
of the power of GAs is derived from so-called implicit
parallelism (Holland, 1975), i.e., the simultaneous al-
location of search effort to many regions of the search
space. A perfect implementation of implicit paral-
lelism implies that a large number of different short,
low-order schemata of high fitness are sampled in par-
allel, thus conferring enough diversity of fundamen-
tal building blocks for crossover operators to combine
them to form more highly-fit, complicated building
blocks. However, traditional GAs suffer from prema-
ture convergence (Goldberg, 1989) where considerable

fixation occurs at certain schemata of suboptimal re-
gions before attaining more advancement. Among ex-
amples of premature convergence, hitchhiking (Das, &
Whitley, 1991; Mitchell, 1996) has been identified as
a major hindrance, which limits implicit parallelism
by reducing the sampling frequency of various ben-
eficial building blocks. In short, non-relevant alleles
hitchhiking on certain schemata could propagate to
the next generation and drown out other potentially
favorable building blocks, thus preventing independent
sampling of building blocks. Consequently, the efficacy
of crossover in combining building blocks is restricted
by the resulting loss of desired population diversity.

Mitchell, Holland and Forrest (1994) considered a so-
called “idealized genetic algorithm” (IGA) that allows
each individual to evolve completely independently;
thus new samples are given independently to each
schema region and hitchhiking is suppressed. Then
under the assumption that the IGA has the knowl-
edge of the desired schemata in advance, they derived
a lower bound for the number of function evaluations
that the IGA will need to find the optimum of Royal
Road function R1 (Mitchell, Forrest, & Holland, 1992).

However, the IGA is impractical because it requires the
exact knowledge of desired schemata ahead of time.
Partially motivated by the idea of the IGA, we pro-
pose a more robust GA that proceeds in two phases:
the “independent sampling phase” and the “breeding
phase”. In the independent sampling phase, we design
a core scheme, named the “Building Block Detecting
Strategy” (BBDS), to extract relevant building block
information of a fitness landscape. In this way, an in-
dividual is able to sequentially construct more highly-
fit partial solutions. For Royal Road R1, the global
optimum can be attained easily. For other more com-
plicated fitness landscapes, we allow a number of indi-
viduals to adopt the BBDS and independently evolve
in parallel so that each schema region can be given
samples independently. During this phase, the popu-

lation is expected to be seeded with promising genetic
material. Then follows the breeding phase, in which
individuals are paired for breeding based on two mate
selection schemes (Huang, 2001): individuals being as-
signed mates by natural selection only and individuals
being allowed to actively choose their mates. In the
latter case, individuals are able to distinguish candi-
date mates that have the same fitness yet have differ-
ent string structures, which may lead to quite differ-
ent performance after crossover. This is not achiev-
able by natural selection alone since it assigns individ-
uals of the same fitness the same probability for being
mates, without explicitly taking into account string
structures. In short, in the breeding phase individu-
als manage to construct even more promising schemata
through the recombination of highly-fit building blocks
found in the first phase. Due to the characteristic of
independent sampling of building blocks that distin-
guishes the proposed GAs from conventional GAs, we
name this type of GA independent sampling genetic
algorithms (ISGAs).

2 LITERATURE REVIEW

In GA research, extensive attention has been paid to
how to alleviate premature convergence. An example
is the class of parallel GAs (PGAs) that are devel-
oped to degrade centralized selection control used in
simple GAs in order to accommodate more population
diversity. Among these PGAs, the “fine-grained” type
(Cantú-Paz, 1997) is an idealized model that allows
only one individual to evolve in each deme and thereby
implements the decentralization of selection scheme to
the maximum degree. Mühlenbein (1991) used a lo-
cal hillclimbing algorithm to refine the individuals in
his fine-grained PGAs along with a mating strategy
based on population structure and the empirical re-
sults showed that his PGA is an effective optimization
tool.

The independent sampling phase of ISGAs is similar
to the fine-grained PGAs in (Mühlenbein, 1991) in
the sense that each individual evolves autonomously,
although ISGAs do not adopt the population struc-
ture. The second distinction is that Mühlenbein’s
fine-grained PGAs process strings in a homogeneous
fashion. An initial population is randomly generated.
Then in every cycle each individual does local hill-
climbing, and creates the next population by mating
with a partner in its neighborhood and replacing par-
ents if offspring are better. By contrast, ISGAs parti-
tion the genetic processing into two phases: the inde-
pendent sampling phase and the breeding phase as de-
scribed in the preceding section. Third, the approach

employed by each individual for improvement in IS-
GAs is different from that of the PGAs. During the
independent sampling phase of ISGAs, in each cycle,
through the BBDS, each individual attempts to ex-
tract relevant information of potential building blocks
whenever its fitness increases. Then, based on the
schema information accumulated, individuals continue
to construct more complicated building blocks. How-
ever, the individuals of Mühlenbein’s PGAs adopt a
local hillclimbing algorithm that does not manage to
extract relevant information of potential schemata.

The motivation of the two-phased ISGAs was partially
from the “messy genetic algorithms (mGAs)” in (Gold-
berg, Korb, & Deb, 1989; Goldberg, Deb, Kargupta, &
Harik, 1993). The two stages employed in the mGAs
are “primordial phase” and “juxtapositional phase”,
in which the mGAs first emphasize candidate build-
ing blocks based on the guess at the order k of small
schemata, then juxtaposing them to build up global
optima in the second phase by “cut” and “splice” op-
erators. However, in the first phase, the mGAs still
adopt centralized selection to emphasize some candi-
date schemata; this in turn results in the loss of sam-
ples of other potentially promising schemata. By con-
trast, ISGAs manage to postpone the emphasis of can-
didate building blocks to the latter stage, and highlight
the feature of independent sampling of building blocks
to suppress hitchhiking in the first phase. As a result,
population is more diverse and implicit parallelism can
be fulfilled to a larger degree. Thereafter, during the
second phase, ISGAs implement population breeding
through two mate selection schemes as discussed in
the preceding section. In this way, we may examine if
the results obtained for the ISGAs are consistent with
what has been done for simple serial GAs in (Huang,
2001).

In the following sections, we present the key compo-
nents of ISGAs in detail and show the comparisons be-
tween the experimental results of the ISGAs and those
of several other GAs on two benchmark test functions.

3 COMPONENTS OF ISGAS

ISGAs are divided into two phases: the independent
sampling phase and the breeding phase. We describe
them as follows.

3.1 INDEPENDENT SAMPLING PHASE

To implement independent sampling of various build-
ing blocks, a number of strings are allowed to evolve
in parallel and each individual searches for a possi-
ble evolutionary path entirely independent of others.

In this paper, we develop a new searching strategy,
Building Block Detecting Strategy (BBDS), for each
individual to evolve based on the accumulated knowl-
edge for potentially useful building blocks. The idea
is to allow each individual to probe valuable informa-
tion concerning beneficial schemata through testing its
fitness increase since each time a fitness increase of a
string could come from the presence of useful building
blocks on it. In short, by systematically testing each
bit to examine whether this bit is associated with the
fitness increase during each cycle, a cluster of bits con-
stituting potentially beneficial schemata will be uncov-
ered. Iterating this process guarantees the formation
of longer and longer candidate building blocks.

The operation of BBDS on a string can be described
as follows.

1. Generate an empty set for collecting genes of can-
didate schemata and create an initial string with uni-
form probability for each bit until its fitness exceeds
0. (Record the current fitness as Fit.)

2. Except the genes of candidate schemata collected,
from left to right, successively flip all the other bits,
one at a time, and evaluate the resulting string. If
the resulting fitness is less than Fit, record this bit’s
position and original value as a gene of candidate
schemata.

3. Except the genes recorded, randomly generate all
the other bits of the string until the resulting string’s
fitness exceeds Fit. Replace Fit by the new fitness.

4. Go to steps 2 and 3 until some end criterion.

The idea of this strategy is that the cooperation of cer-
tain genes (bits) makes for good fitness. Once these
genes come in sight simultaneously, they contribute a
fitness increase to the string containing them; thus any
loss of one of these genes leads to the fitness decrease
of the string. This is essentially what step 2 does and
after this step we should be able to collect a set of
genes of candidate schemata. Then at step 3, we keep
the collected genes of candidate schemata fixed and
randomly generate other bits, awaiting other building
blocks to appear and bring forth another fitness in-
crease.

However, the step 2 in this strategy only emphasizes
the fitness drop due to a bit-flip. It ignores the possi-
bility that the same bit-flip leads to a new fitness rise
because many loci could interact in an extremely non-
linear fashion. To take this into account, the second
version of BBDS is introduced through the change of
step 2 as follows.

Step 2. Except the genes of candidate schemata col-

lected, from left to right, successively flip all the other
bits, one at a time, and evaluate the resulting string.
If the resulting fitness is less than Fit, record this
bit’s position and original value as a gene of candi-
date schemata. If the resulting fitness exceeds Fit,
substitute this bit’s “new” value for the old value, re-
place Fit by this new fitness, record this bit’s position
and “new” value as a gene of candidate schemata, and
re-execute this step.

Because this version of BBDS takes into considera-
tion the fitness increase resulted from bit-flips, it is
expected to take less time for detecting. Several em-
pirical results so far support this reasoning (for exam-
ple, the experimental results of these two versions on
Royal Road functions shown in the next section).

Other versions of BBDS are of course possible. For ex-
ample, in step 2, if a bit-flip results in a fitness increase,
it can be recorded as a gene of candidate schemata,
and the procedure continues to test the residual bits
yet without completely travelling back to the first bit
to re-examine each bit. However, the empirical re-
sults obtained thus far indicate that the performance
of this alternative is quite similar to that of the second
version. More experimental results are needed to dis-
tinguish the difference between them. In this paper,
we present the results obtained based on the first and
second versions of BBDS.

The overall implementation of the independent sam-
pling phase of ISGAs is through the proposed BBDS
to get autonomous evolution of each string until all
individuals in the population have reached some end
criterion.

In section 4, we will present an analysis of the BBDSs
on two types of idealized test functions: “Royal Road”
functions (non-deceptive) and problems of bounded
deception (deceptive).

3.2 BREEDING PHASE

After the independent sampling phase, individuals in-
dependently build up their own evolutionary avenues
by various building blocks. Hence the population is
expected to contain diverse beneficial schemata and
premature convergence is alleviated to some degree.
However, factors such as deception and incompatible
schemata (i.e., two schemata have different bit values
at common defining positions) still could lead indi-
viduals to arrive at sub-optimal regions of a fitness
landscape. Since building blocks for some strings to
leave sub-optimal regions may be embedded in other
strings, the search for proper mating partners and then
exploiting the building blocks on them are critical for

overwhelming the difficulty of strings being trapped in
undesired regions. In (Huang, 2001) the importance
of mate selection has been investigated and the results
showed that the GAs are able to improve their per-
formance when the individuals are allowed to select
mates to a larger degree.

In this paper, we adopt two mate selection schemes
analyzed in (Huang, 2001) to breed the population:
individuals being assigned mates by natural selection
only and individuals being allowed to actively choose
their mates. Since natural selection assigns strings of
the same fitness the same probability for being parents,
individuals of identical fitness yet distinct string struc-
tures are treated equally. This may result in significant
loss of performance improvement after crossover. This
issue is the major concern in (Huang, 2001) and we
continue this research line to ISGAs in this paper.

We adopt the tournament selection scheme (Mitchell,
1996) as the role of natural selection and the mech-
anism for choosing mates in the breeding phase is as
follows:

During each mating event, a binary tournament
selection—with probability 1.0 the fitter of the two
randomly sampled individuals is chosen—is run to pick
out the first individual, then choosing the mate accord-
ing to the following two different schemes:

A. Run the binary tournament selection again to
choose the partner.

B. Run another two times of the binary tournament
selection to choose two highly-fit candidate part-
ners; then the one more dissimilar to the first in-
dividual is selected for mating.

The implementation of the breeding phase is through
iterating each breeding cycle which consists of 1)
Two parents are obtained based on the mate selec-
tion schemes above. 2) Two-point crossover operator
(crossover rate 1.0) is applied to these parents. 3) Both
parents are replaced with both offspring if any of the
two offspring is better than them. Then steps 1, 2, and
3 are repeated until the population size is reached and
this is a breeding cycle. (To give crossover its stiffest
test, we turn off mutation for all the performance tests
in this paper.)

In (Huang, 2001), the results showed that the mate
selection scheme B outperforms scheme A in general,
given the objective of finding the global optimum with
minimum time. Since those results were obtained in
simple GAs, we are concerned with whether this con-
clusion can be extended to the ISGAs as well.

Having described the components of ISGAs, we are
now on the road to test their performance.

4 EXPERIMENTAL RESULTS

Two types of test functions are used for examining
the performance of the ISGAs: “Royal Road” func-
tions (non-deceptive) and problems of bounded decep-
tion (deceptive). The performance of some other ap-
proaches will be compared with that of the ISGAs as
well.

4.1 PERFORMANCE ON ROYAL ROAD
FUNCTIONS

The Royal Road functions designed by Mitchell, For-
rest, and Holland (1992) were to investigate in more
detail the validity of the Building Block Hypothesis
(Holland, 1975; Goldberg, 1989), which implies that
the performance of GAs largely depends on the effi-
cacy of crossover to combine small, highly-fit schemata
to form more complex, highly-fit schemata. The fit-
ness landscape of Royal Road functions consists of
two characteristics: the presence of short, low-order,
highly-fit schemata and hierarchical structure which
allows these small schemata to repeatedly construct
more and more highly-fit schemata and eventually
reach the global optimum. One example of this class
is Royal Road R1 whose fitness landscape is composed
of eight consecutive building blocks of eight ones each.
It is apparent that Royal Road R1 is a non-deceptive
function and it was expected that GAs perform quite
well on such a fitness landscape due to the Building
Block Hypothesis. However, Mitchell’s experimental
results indicated that the unsatisfactory GA perfor-
mance on this function is primarily from hitchhiking
phenomenon, one of possible causes of premature con-
vergence.

In (Mitchell, 1995), the performance of the GA
was further compared with those of three iter-
ated hill-climbing searching algorithms: steepest-
ascent hill-climbing (SAHC), next-ascent hill-climbing
(NAHC) (Mühlenbein, 1991), and random-mutation
hill-climbing (RMHC) (Forrest, & Mitchell, 1993).
They performed 500 runs for the GA with population
size 128 and 200 runs for each of the three hill-climbing
algorithms, and reported that SAHC and NAHC never
found the optimum within 256,000 function evalua-
tions but the GA can attain the optimum in an aver-
age of 61,334 function evaluations. Moreover, RMHC
found the optimum only in an average of 6179 function
evaluations, nearly ten times faster than the GA.

We performed 1000 runs of the ISGA on Royal Road

R1 and the end criterion is the moment for the global
optimum being found. It turned out that for such a hi-
erarchical, non-deceptive structure only an individual
is needed, based on the building block detecting strat-
egy discussed earlier, to serve for good performance. It
actually found the optimum only in an average of 975
function evaluations for the first version of BBDS and
901 for the second version—more than six times faster
than RMHC and sixty times faster than the GA.

These experimental results can be summarized in Ta-
ble 1 in which the standard deviation is shown for each
case as well.

Table 1: Experimental Results on R1

Function Evaluations to Optimum
Mean Standard Deviation

GA 61334 32583
SAHC >256,000 –
NAHC >256,000 –
RMHC 6179 2630

BBDS v. 1 975 314
BBDS v. 2 901 309

To see why the structures aggregated by the BBDS
are indeed potentially promising schemata, let us turn
to the motivation of the BBDS, i.e., the IGA. On the
idealized model Royal Road R1, Mitchell et al. (1994)
discussed the expected time for the IGA to construct
all the eight building blocks for reaching the opti-
mum and obtained the theoretical result of 696 func-
tion evaluations. In the process of BBDS version 1,
when the first building block emerges in the string,
64 evaluations are required to detect it since we need
to flip all the 64 bits, one at a time, and evaluate
the resulting string. Similarly, as the second build-
ing block comes in sight, another 56 evaluations is re-
quired to detect it. By this reasoning, the total eval-
uations required for detecting the building blocks are
64+56+48+40+32+24+16=280. (It is not necessary
to detect the final single block because the appearance
of the final building block is at the same moment of
the optimum being attained.) If two or more build-
ing blocks appear simultaneously, the evaluations for
detecting will be less than 280, but this occurs with
a rather small probability. Therefore, the sum of 696
function evaluations (the theoretic result obtained by
Mitchell et al.) for constructing all the eight build-
ing blocks and 280 function evaluations for detecting
these building blocks is 976. This is almost perfectly
consistent with the result obtained for BBDS version 1
shown in Table 1. Thus, we can conclude that BBDS
implements nearly the idealized GA on Royal Road
R1 in the sense that extra function evaluations are re-

quired to detect the building blocks. As for the perfor-
mance of the second version of BBDS, since it adopts
a more greedy method to detect the building blocks,
it takes less time to attain the optimum than the first
version does.

Another idealized model to test the power of BBDS
is Royal Road R2 (Forrest, & Mitchell, 1993). This
function was designed to verify if the presence of inter-
mediate “stepping stones” (intermediate-order higher-
fitness schemata that result from combinations of the
lower-order schemata, and that in turn can combine to
form even higher-fitness schemata) can speed up GAs’
searching process. Forrest et al. (1993) found that if
some intermediate stepping stones are much fitter than
the primitive components, then hitchhiking problem
becomes more severe and thus premature convergence
slows down the discovery of some necessary schemata.

We summarize the results from two versions of the
BBDS and those reported in (Forrest, & Mitchell,
1993) in Table 2.

Table 2: Experimental Results on R2

Function Evaluations to Optimum
Mean Standard Deviation

GA 73563 40115
SAHC >256,000 –
NAHC >256,000 –
RMHC 6551 2998

BBDS v. 1 975 314
BBDS v. 2 901 309

This table shows that the GA indeed performed worse
on R2 than on R1. However, under the same random
seed, the BBDS has the exact performance on R1 and
R2, indicating that stepping stones do not have any
negative impact on the search power of the BBDS.
This is because the BBDS essentially takes into ac-
count only fitness increase or decrease, not the amount
of relative fitness difference. Thus any extra fitness dif-
ference contributed by the stepping stones of R2 does
not affect the performance of the BBDS.

Since Royal Road functions are non-deceptive, such
landscapes allow BBDS to exhibit the maximum ca-
pability to extract information concerning the build-
ing blocks whenever they come in sight on the string;
thus the global optimum can be reached very quickly.
Several empirical results obtained so far indeed show
that BBDS significantly outperforms RMHC and tra-
ditional GAs on such non-deceptive fitness landscapes.

Although the ISGA needs to employ only a string to
attain the optimum of Royal Road functions, this sin-

gle individual can be fooled by any deceptive schemata.
If this is the case, the ISGA with population size one
is certainly not enough for attaining gratifying perfor-
mance. In the next subsection, we present the exper-
imental results of the ISGAs with larger population
size on another benchmark test function which bears
this fitness landscape feature.

4.2 PERFORMANCE ON 30-BIT
BOUNDED DECEPTION PROBLEM

The problems of bounded deception designed by Gold-
berg et al. (1989) were to investigate the performance
of GAs on deceptive functions in which low-order,
highly-fit schemata mislead GAs away from global op-
tima and toward the complement of the global opti-
mum. One example of this class is an order-3 fully
deceptive function as defined in Table 3.

Table 3: A fully deceptive, order-3 problem

bit value bit value
111 30 100 14
101 0 010 22
110 0 001 26
011 0 000 28

On this 3-bit, deceptive problem, calculations of the
average fitness of schema show that GAs are likely
to be led toward the complement of the global opti-
mum, i.e., 000, instead of toward the global optimum,
111. To demonstrate the effect of this deception on the
search power of GAs, Goldberg et al. (1989) designed
a 30-bit deceptive function, E10, which is composed of
ten consecutive blocks of this 3-bit deceptive function.

In contrast to the non-deceptive feature of Royal Road
functions, it is apparent that this 30-bit deceptive
function imposes enough difficulty for GAs to arrive
at the global maximum (1,1,...,1).

We performed 50 runs of the ISGAs with mate se-
lection schemes A and B on E10, based on the sec-
ond version of BBDS, for population size 40 and 80.
The end criterion of the BBDS in this case is the mo-
ment that the length of candidate schemata reaches
the length of the string. After all the strings reach the
end criterion of the BBDS, the independent sampling
phase stops and the breeding phase gets started. We
then measure the number of function evaluations re-
quired to find the global optimum and the results are
shown in Table 4 (the standard deviation is given in
the parentheses).Notice that the ISGA with mate selection scheme
B requires fewer function evaluations than that with
scheme A. These results indicate that the ISGA with

Table 4: Experimental Results on E10

Function Evaluations to Optimum
Population size 40 Population size 80

Scheme A 11786 (11034) 16794 (12175)
Scheme B 9582 (7889) 11122 (5614)

mate selection B indeed outperforms that with scheme
A, which is consistent with the results obtained in
(Huang, 2001).

To see how the BBDS version 2 searches this fitness
landscape, we show that after the independent sam-
pling phase, only (111) or (000) will emerge at each
block, and the probabilities are 1

4 , and 3
4 , respectively

(please see Appendix). Thus for a population of 40 in-
dividuals, the probability that the population contains
no building block (111) at a building-block location is
only (3

4)40 ≈ 1.0 × 10−5; and for a population size
80, the probability is (3

4)80 ≈ 1.0 × 10−10. Therefore
these two population sizes serve for enough underlying
building blocks to construct the global optimum.

To compare total function evaluations used by the two
phases in the ISGAs, we show the results in Table 5,
where the first element corresponds to the evaluations
spent in the independent sampling phase and the sec-
ond corresponds to that in the breeding phase. In this
table, it is clear that scheme B has higher efficiency
of exploiting the building blocks found in the indepen-
dent sampling phase to construct the global optimum.

Table 5: Total Function Evaluations in Two Phases

Population Size 40 Population Size 80
Scheme A (1159,10627) (2322,14472)
Scheme B (1160,8422) (2320,8802)

To demonstrate the capability of the ISGAs, we com-
pare their performance (based on population size
40) with that of several different types of GAs: a
mGA (Goldberg, Korb, & Deb, 1989), a modified
mGA (Goldberg, Deb, Kargupta, & Harik, 1993),
a Breeder GA (BGA) (Mühlenbein & Schlierkamp-
Voosen, 1993), and two versions of PGA (2pc-wohc,
two-point cyclic crossover without hill-climbing, and
2pc-nahc, two-point cyclic crossover with next ascent
hill-climbing) (Mühlenbein, 1991). We also ran a sim-
ple serial GA over 50 runs (based on a binary tour-
nament selection–with probability 1.0 the fitter of the
two randomly sampled individuals is chosen, mutation
rate 0.005, two-point crossover rate 0.7, population
size 80, and maximum function evaluations 50000 for
each run). The experimental results of the ISGAs and

other GAs reported can be summarized in Table 6 from
which we can see that the ISGAs significantly outper-
form other GAs.

Table 6: Performance of Several Types of GAs

Mean Function Evaluations to Optimum
ISGA (Scheme A) 11786
ISGA (Scheme B) 9582

mGA 40600
Modified mGA 26650

BGA 16000
2pc-wohc PGA 21398
2pc-nahc PGA 40500

Serial GA 0 runs reached optimum

5 DISCUSSIONS

One issue that also concerns us is the effect of popu-
lation size. In Table 4, we see that the ISGA with
larger population size has worse performance than
with smaller population size. This can be more clearly
seen in Table 5. In this table, for the same population
size, the function evaluations required in the indepen-
dent sampling phase for two schemes are almost the
same, yet in the breeding phase the difference between
two schemes for population size 80 is larger than that
for population size 40.

This is the opposite of what has been obtained for
simple serial GAs in (Huang, 2001), in which larger
population size reduces the performance difference be-
tween these two mate selection schemes. So far, the
answer for this seeming paradox has not yet been ob-
tained, but we can conjecture that since the ISGAs
implement independent sampling of building blocks in
the first phase to a maximum degree, they may gen-
erate too diverse a population if the population size is
large enough. This in turn slows down the evolution
of the population in the breeding phase.

How does population diversity affect the searching pro-
cess for different goals, such as finding a global op-
timum or forming speciation? From the discussion
above, it is clear that larger population size is not al-
ways advantageous and we will manage to investigate
the relationship between diversity and finding a global
optimum in the near future.

6 CONCLUSIONS

In this paper we first present an exploratory method
(BBDS) to show how the searching speed of individu-

als can be improved. Through explicitly acquiring rel-
evant knowledge of candidate building blocks, BBDS
outperformed several representative hill-climbing algo-
rithms on non-deceptive Royal Road functions. Then
a new class of GAs based on BBDS, i.e., ISGAs, is
proposed. In the first phase of ISGAs, implicit par-
allelism is nicely realized by allowing each individual
to accomplish independent building-block sampling to
suppress hitchhiking; thus the population is expected
to carry diverse promising schemata. Afterwards, with
one mate selection scheme that allows individuals to
actively choose their mating partners, the efficacy of
crossover is enhanced and the ISGAs have been shown
to outperform several different GAs on a benchmark
test function that is full of deception.

7 FUTURE WORK

Much work remains to be done. The author is now
testing the capability of ISGAs on more complicated
fitness landscapes, such as the hyperplane defined
functions (HDFs) designed by Holland (2000), which
parameterize fitness landscapes to encompass features
such as hierarchy, poor-linkage, potholes, hills, bad-
lands, ridges, etc. Other research lines are to examine
in more detail the impact of mutation and the differ-
ence between two-phased and traditional (one-phased)
GAs. Afterwards, our hope is to extend the single two-
phased procedure to successive two-phased procedures
over the course of evolution, i.e., iterating the two
phases during the whole run. In addition, other ver-
sions of BBDS are worth investigating so that building-
block detecting is more effectively implemented. More-
over, a theoretical foundation is needed to explain the
whys and wherefores of the excellent performance of
ISGAs, and finally our goal is to extend the applica-
tion of ISGAs to real problems.

Acknowledgments

The author would like to thank Rick Riolo, John Hol-
land for their advice, and Bob Lindsay, Ted Belding,
Leeann Fu, and Tom Bersano-Begey for their com-
ments and suggestions.

Appendix

For BBDS version 2, let us start with an initial 3-bit
sub-string, for example, at (101) (fitness = 0). Then
the first bit is flipped to 0, which causes the fitness to
increase to 26; thus this bit’s value must be replaced
by 0 and its bit-position and new bit-value (i.e., 0)
are recorded as the first gene of the candidate schema.
After this function evaluation the candidate schema is

(0xx) (“x” represents a not-yet-tested gene) and this
sub-string is now (001).

Then under the instruction of step 2, we have to go
back to the first bit again and flip it. But since this
gene has been already recorded, we do not flip this
bit; instead the next bit is temporarily flipped to 1
for test, leading the fitness to decrease to 0. Thus the
original value of the sub-string’s second bit is kept (i.e.,
0) and we record this bit’s position and original value
as the second gene of the candidate schema, and this
candidate schema is now (00x).

Then the BBDS goes to the third bit and flip it. We
thus obtain (000), which leads to the fitness of 28.
Thus we record this bit’s position and new value as
the third gene of the candidate schema, which is now
(000).

Since the length of this candidate schema reaches the
length of this 3-bit sub-string, we stop here.

The process can be symbolized in the following:

(101) −→ (0xx) −→ (00x) −→ (000).

Analogously, the collected candidate schemata for the
starting points at (100), (110), (010), (001), and (000)
will be (000); and those for (011) and (111) will be
(111).

We summarize the results as follows:

(000) −→ (0xx) −→ (00x) −→ (000);

(001) −→ (0xx) −→ (00x) −→ (000);

(010) −→ (0xx) −→ (00x) −→ (000);

(100) −→ (0xx) −→ (00x) −→ (000);

(101) −→ (0xx) −→ (00x) −→ (000);

(110) −→ (0xx) −→ (00x) −→ (000);

(011) −→ (1xx) −→ (11x) −→ (111);

(111) −→ (1xx) −→ (11x) −→ (111).

References

Cantú-Paz, E. (1997). A survey of parallel genetic al-
gorithms (IlliGAL Report No. 97003). Urbana, IL:
University of Illinois at Urbana-Champaign.

Das, R., & Whitley, L. D. (1991). The only challenging
problems are deceptive: Global search by solving order
1 hyperplanes. Proceedings of the Fourth International
Conference on Genetic Algorithms, 166-173.

Forrest, S., & Mitchell, M. (1993). Relative building
block fitness and the building block hypothesis. Foun-
dations of Genetic Algorithms 2, 109–126.

Goldberg, D. E. (1989). Genetic Algorithms in search,
Optimization, and Machine Learning. Reading, MA:
Addison Wesley.

Goldberg, D. E., Deb, K., & Korb, B. (1991). Don’t
worry, be messy. Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms, 24-30.

Goldberg, D. E., Deb, K., Kargupta, H., & Harik, G.
(1993). Rapid, Accurate optimization of difficult prob-
lems using fast messy genetic algorithms. Proceedings
of the Fifth International Conference on Genetic Al-
gorithms, 56-64.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy
genetic algorithms: Motivation, analysis, and first re-
sults. Complex Systems 3, 493-530.

Holland, J. H. (1975). Adaptation in Natural and Arti-
ficial Systems. University of Michigan Press. (Second
edition: MIT Press, 1992.)

Holland, J. H. (2000). Building blocks, cohort genetic
algorithms, and hyperplane-defined functions. Evolu-
tionary Computation 8(4):373-391.

Huang, C.-F. (2001). An Analysis of Mate Selec-
tion in Genetic Algorithms. Proc. of 2001 Genetic
and Evolutionary Computation Conference (GECCO-
2001), submitted.

Mitchell, M., Forrest, S., & Holland, J. H. (1992).
The royal road for genetic algorithms: Fitness land-
scapes and GA performance. Toward a Practice of
Autonomous Systems: Proceedings of the First Euro-
pean Conference on Artificial Life, 245–254.

Mitchell, M., Holland, J. H., & Forrest, S. (1994).
When will a genetic algorithm outperform hill climb-
ing? Advances in Neural Information Processing Sys-
tems 6, 51–58.

Mitchell M.(1996). An introduction to Genetic Algo-
rithms. Cambridge, MA: MIT Press.

Mühlenbein, H. (1991). Evolution in time and space
– The parallel genetic algorithm. Foundations of Ge-
netic Algorithms, 316–337.

Mühlenbein, H. (1992). How genetic algorithms re-
ally work I: Mutation and hillclimbing. Proceedings of
Parallel Problem Solving from Nature 2, 15–26.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993).
Optimal interaction of mutation and crossover in the
breeder genetic algorithm. Technical Report 93-042,
GMD.

